A Hybrid Architecture for Programmable Meta‐System Using a Few Active Elements

Author:

Wang Zheng Xing12,Wu Jun Wei1234,Yang Han Qing12,Zhou Qun Yan12,Wang Si Ran12,Xu Hui12,Wu Li Jie12,Quan Yinghui5,Cheng Qiang12,Cui Tie Jun1234ORCID

Affiliation:

1. Institute of Electromagnetic Space Southeast University Nanjing 210096 China

2. State Key Laboratory of Millimeter Waves School of Information Science and Engineering Southeast University Nanjing 210096 China

3. Peng Cheng Laboratory Shenzhen Guangdong 518055 China

4. Pazhou Laboratory (Huangpu) Guangzhou Guangdong 510555 China

5. Department of Remote Sensing Science and Technology School of Electronic Engineering Xidian University Xi'an 710071 China

Abstract

AbstractDigital coding and programmable metasurfaces stand out as promising candidates in future wireless communications due to their low costs and fast‐action reprogrammable capability. However, 2 significant obstacles, namely integration and power consumption, must be addressed before large‐scale engineering application of the programmable metasurface. This work proposes an easy‐integration and energy‐saving meta‐system and demonstrates its application in wireless communications. The meta‐system features a hybrid architecture and consists of a programmable feed array and a metasurface lens. The feed array comprises 3 subarrays, in which active elements are doped with passive elements and interconnected configurations are used to efficiently reduce the number of active elements by one‐third. The meta‐lens acts as a passive phase shifter to enhance the beamforming performance, further reducing the number of active elements. Moreover, the meta‐system can switch between different modes to achieve various functions. In particular, the maximum power consumption of the meta‐system is only 54 mW, which can be considered nearly passive. A wireless communication experiment is presented, where the meta‐system simultaneously serves as the direct digital modulator and the transmitting antenna. Owing to the low cost, high integration, and nearly passive and programmable features, the meta‐system has remarkable potential for future applications in wireless communications.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

Peng Cheng Laboratory

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3