Moisture‐Resistant Orange Emitters with Near‐Unity Quantum Yield from Mn2+ Alloyed Vacancy‐Ordered Quadruple Perovskites

Author:

Dang Peipei1,Gu Qianqian2,Zhang Guodong1,Lian Hongzhou1,Li Guogang3,Lin Jun1ORCID

Affiliation:

1. State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China

2. State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou Zhejiang 310058 P. R. China

3. Faculty of Materials Science and Chemistry China University of Geosciences Wuhan Hubei 430074 P. R. China

Abstract

AbstractMn2+‐doped metal halide perovskites present remarkable optical properties in optoelectronic applications, although the realization of high efficiency and stability is still a challenge. In this work, a series of highly efficient and stable orange‐emitting Mn2+ alloyed Cs4Cd1‐xMnxBi2Cl12 single crystals are successfully synthesized via a hydrothermal reaction. Combined with the crystal structure and spectral characterization at 7 K, the site occupation of Mn2+ and defect emission are systematically discussed. Benefiting from the effective [BiCl6]3−→[MnCl6]4− energy transfer and lattice distortion, these single crystals exhibit a maximum internal and external quantum yield of ≈97% and ≈65% at 35% heavy doping level. Interestingly, these Mn2+‐alloyed single crystals exhibit remarkably waterproof stability, no decrease in emission intensity is observed after immersion in deionized water for 4 h. After soaking in deionized water for 100 days, the internal quantum yield can still maintain 44%, implying good chemical stability and moisture resistance due to the formation of protective BiOCl layer. This work provides new insights into the optimization mechanism for Mn2+ luminescence and overcoming the downside of their waterproofing in humid conditions.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3