Manipulating the Self‐Trapped Excitons in the Lead Iodide/Hexagonal Boron Nitride van der Waals Heterostructures

Author:

Li Delong1,Han Na1,Chen Hao1,Zhu Jiaqi1,Gong Youning1,Bao Qiaoliang23,Wang Weiliang4,Zhang Yupeng1ORCID,Wang Guo Ping1

Affiliation:

1. State Key Laboratory of Radio Frequency Heterogeneous Integration College of Electronics and Information Engineering Shenzhen University Shenzhen 518060 China

2. Institute of Energy Materials Science (IEMS) University of Shanghai for Science and Technology Shanghai 200093 China

3. Nanjing KLight Laser Technology Co., Ltd. Nanjing 210032 China

4. School of Physics Sun Yat‐sen University Guangzhou 510275 China

Abstract

AbstractThe self‐trapped excitons (STEs) in soft van der Waals (vdW) materials have aroused tremendous attention. The conventional methods to manipulate the STEs include the introduction of permanent defect or lattice distortion, which lead to the suppression of the inherent structures and properties. Developing a non‐destructive method to achieve room temperature STEs with high tunability is thus of strategic interest. Stacking 2D materials to form a vdW heterostructure will introduce many‐body interactions, which should be exploited to tailor STE emissions controllably. To this regard, the highly tunable STE emissions in vdW heterostructures composed of lead iodide, hexagonal boron nitride, or molybdenum oxide are demonstrated. It is found that the synergistic effect of the dielectric screening and interfacial many‐body interaction improve the temperature characteristic and emission properties of STEs. The strong STE emissions with highly tunable center energies in a broadband spectrum range from ≈625 to 750 nm are verified at room temperature. This work provides a non‐destructive method to manipulate the STE emissions at room temperature in rigid lattice vdW materials, which is expected to open the potential of STEs for next‐generation optoelectronics.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3