Tip‐Enhanced Imaging and Control of Infrared Strong Light‐Matter Interaction

Author:

Wang Yueying12,Johnson Samuel C.1,Nookala Nishant3,Klem John F.4,Turner Samuel R.15,Puro Richard L.1,Hu Min2,Brener Igal4,Muller Eric A.6ORCID,Belyanin Alexey7ORCID,Belkin Mikhail A.8,Raschke Markus B.1ORCID

Affiliation:

1. Department of Physics and JILA University of Colorado Boulder CO 80309 USA

2. Terahertz Research Center School of Electronic Science and Engineering University of Electronic Science and Technology of China Chengdu 610054 China

3. Department of Electrical and Computer Engineering The University of Texas at Austin Austin TX 78712 USA

4. Sandia National Laboratories Albuquerque NM 87185 USA

5. Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

6. Department of Chemistry Colgate University 13 Oak Drive Hamilton NY 13346 USA

7. Department of Physics and Astronomy Texas A&M University College Station TX 77843 USA

8. Walter Schottky Institute Technical University of Munich 85748 Garching Germany

Abstract

AbstractOptical antenna resonators enable control of light‐matter interactions on the nano‐scale via electron–photon hybrid states in strong coupling. Specifically, mid‐infrared (MIR) nano‐antennas coupled to saturable intersubband transitions in multi‐quantum‐well (MQW) semiconductor heterostructures allow for the coupling strength to be tuned through antenna resonance and field intensity. Here, tip‐enhanced nano‐scale variation of antenna‐MQW coupling across the antenna is demonstrated, with a spatially‐dependent coupling strength varying from 73 (strong coupling) to 24 (weak coupling). This behavior is modeled based on the spatially dependent local constructive and destructive interference between tip and antenna fields. Using a quantum‐mechanical density‐matrix model of the MQW system with its designed values of transition dipole moment, doping density, and population decay time, the picosecond IR pulse coupling to intersubband transitions and the associated tip induced strong‐field saturation effects are described. These results present a new regime of nonlinear IR light‐matter control based on the dynamic manipulation of quantum hybrid states on the nanoscale and in the infrared, with a perspective regarding extension to molecular vibrations.

Funder

Air Force Office of Scientific Research

National Science Foundation

Key Technologies Research and Development Program

Basic Energy Sciences

U.S. Department of Energy

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3