Affiliation:
1. Institut National de la Recherche Scientifique Centre Énergie Matériaux Télécommunications (INRS‐EMT) Varennes Quebec J3X 1P7 Canada
2. Department of Molecular Science and Technology Ajou University Suwon 443–749 South Korea
3. Department of Physics, Piazza Leonardo Da Vinci Politecnico di Milano Milano 32, I‐20133 Italy
Abstract
AbstractSince its first demonstration in 1995, terahertz time‐domain imaging has attracted an increasingly growing interest for its ability to reveal spectral fingerprints of materials and probe changes in refractive index and absorption, as well as detect the inner structure of complex objects via time‐of‐flight measurements. Practically, however, its widespread use has been hampered by the very long acquisition time typically required to spatially raster‐scan the object, and for each spatial point, record the field in time via a delay line. Here, this fundamental bottleneck is addressed by implementing a scanless single‐pixel imaging scheme, which sets the path for an unprecedented reduction of both system complexity and acquisition time. By properly exploiting natural wave diffraction, time‐to‐space encoding applied to terahertz point detection allows for an almost instantaneous capture of the terahertz waveforms, while multidimensional images are reconstructed via a computational approach. The scheme is a promising solution for the development of next‐generation fast and compact terahertz imagers perfectly suitable for high‐repetition‐rate laser sources.
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献