Ultra‐High‐Order Laguerre–Gaussian Field Generated Directly From a Laser Cavity with Spherical Aberration

Author:

Sheng Quan12ORCID,Wang Aihua12,Geng Jingni12,Fu Shijie12ORCID,Ma Yuanyuan3,Shi Wei12ORCID,Yao Jianquan12,Omatsu Takashige3,Spence David4

Affiliation:

1. Institute of Laser and Optoelectronics, School of Precision Instrument and Optoelectronics Engineering Tianjin University Tianjin 300072 P. R. China

2. Key Laboratory of Optoelectronic Information Technology (Ministry of Education) Tianjin University Tianjin 300072 P. R. China

3. Molecular Chirality Research Center Chiba University 1–33 Yayoi‐cho, Inage‐ku Chiba 263‐8522 Japan

4. School of Mathematical and Physical Sciences Macquarie University Sydney New South Wales 109 Australia

Abstract

AbstractPursuing higher topological charge—larger angular indices m of high‐order Laguerre–Gaussian (LG) beams—is not only important for frontier applications like optical/quantum communication, optical tweezers, and super‐resolution imaging, but also involves a novel laser cavity and beam dynamics. Active methods to directly generate high‐order‐mode vortex beams from a laser cavity have excellent power handling and conversion efficiency, but struggle to achieve hundred‐level ultra‐high‐order LG modes. Here, the generation of ultra‐high‐order LG beams with m beyond 300 is demonstrated, utilizing the spherical aberration of a lens in the cavity of a simple end‐pumped Nd:YVO4 laser at 1064 nm. LG0,±m modes with m up to 317, selectable across a large range, are generated. With a simple model, how the mode selection relates to the cavity parameters is explained, and it is predicted that even higher order mode output can be expected by appropriate management of the elements’ aperture and laser gain. The approach provides a simple and flexible method to convert a wide range of lasers to generate ultra‐high‐order LG modes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3