Spectral Pulsations of Dissipative Solitons in Ultrafast Fiber Lasers: Period Doubling and Beyond

Author:

Wang Zhiqiang123ORCID,Coillet Aurélien4,Hamdi Saïd4,Zhang Zuxing2,Grelu Philippe4

Affiliation:

1. Aston Institute of Photonic Technologies Aston University Birmingham B4 7ET UK

2. Advanced Photonic Technology Lab College of Electronic and Optical Engineering Nanjing University of Posts and Telecommunications Nanjing 210023 China

3. The Information Materials and Intelligent Sensing Laboratory of Anhui Province Anhui University Hefei 230039 China

4. Laboratoire ICB UMR 6303 CNRS Université Bourgogne Franche‐Comté 9 avenue Alain Savary Dijon F‐21000 France

Abstract

AbstractPeriod doubling is a universal bifurcation of central importance in all disciplines of nonlinear science, which generally signals the existence of chaotic dynamics in the vicinity of the system parameters. Although observed in diverse ultrafast laser configurations, there is still no consensus on its physical origin. Real‐time spectral characterization techniques have recently allowed revisiting pulsating dynamics, from period‐2 to long‐period pulsations. Following a contextual review, this article presents a variety of bifurcation sequences entailing the spectral pulsations of dissipative solitons. These experiments, using ultrafast fiber lasers operated in both chromatic dispersion regimes, are confronted with numerical simulations to demonstrate that self‐phase modulation represents a general mechanism triggering period‐2 bifurcations. In addition, by ramping up the pump power, original sequences of period‐doubling bifurcations intertwined with more complex bifurcations are presented, where entrainment phenomena are unveiled. These findings provide a more general understanding of the period‐doubling bifurcation in ultrafast laser systems while highlighting their potentially intricate combinations with complex bifurcations, which may be exclusively observable from the spectral domain.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

H2020 Marie Skłodowska-Curie Actions

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3