Laser Plasma‐Accelerated Ultra‐Intense Electron Beam for Efficiently Exciting Nuclear Isomers

Author:

Feng Jie12ORCID,Li Yaojun12,Tan Junhao12,Wang Wenzhao12,Li Yifei3,Zhang Xiaopeng4,Meng Yue1,Ge Xulei12,Liu Feng12,Yan Wenchao12,Fu Changbo5,Chen Liming12,Zhang Jie123

Affiliation:

1. Key Laboratory of Laser Plasma (MoE) School of Physics and Astronomy Shanghai Jiao Tong University Shanghai 200240 China

2. IFSA Collaborative Innovation Center Shanghai Jiao Tong University Shanghai 200240 China

3. Laboratory of Optical Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China

4. Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China

5. Key Laboratory of Nuclear Physics and Ion‐beam Application (MoE) Institute of Modern Physics Fudan University Shanghai 200433 China

Abstract

AbstractUtilizing a laser plasma wakefield to accelerate ultrahigh charge and current electron beams is critical for many pioneering applications, for example, to efficiently produce nuclear isomers with short lifetimes that may be widely used. However, because of the beam loading effect, the electron charge in a single plasma bubble is limited to hundreds of picocoulombs. Herein, via a tightly focused intense laser pulse self‐guiding in dense gas, a twenty‐nanocoulomb, tens‐of‐MeV, hundred‐kiloampere collimated electron beam is produced from a chain of plasma bubbles in the saturated injection regime. This intense electron beam is utilized to excite indium nuclear isomers with an ultrahigh peak rate of particles·s‐1 via photonuclear reaction. This efficient isomer production method can be widely used for pumping isotopes with excited state lifetimes on the picosecond scale, which is beneficial for deeply understanding nuclear transition mechanisms or stimulating γ‐ray lasers.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Science Challenge Project

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3