All‐Dielectric Huygens’ Meta‐Waveguides for Resonant Integrated Photonics

Author:

Sırmacı Yunus Denizhan12,Barreda Gomez Angela12,Pertsch Thomas2,Schmid Jens H.3,Cheben Pavel3,Staude Isabelle12ORCID

Affiliation:

1. Friedrich‐Schiller‐University Jena Institute of Solid State Physics 07743 Jena Germany

2. Friedrich‐Schiller‐University Jena Institute of Applied Physics Abbe Center of Photonics 07745 Jena Germany

3. National Research Council of Canada Ottawa Ontario K1A 0R6 Canada

Abstract

AbstractThe growing maturity of nanofabrication technology has recently enabled the deployment of high‐quality subwavelength nanostructures on photonic chips. Combining existing photonic waveguide technology with the paradigms adapted from metamaterials opens new avenues towards unprecedented control of guided light waves. However, developing new functionalities while preserving efficiencies and offering compatibility with current technology remains a major challenge in on‐chip nanophotonics. Here, a novel silicon nanophotonic waveguide comprising a chain of resonantly forward scattering nanoparticles empowered by spectrally overlapping electric and magnetic dipolar Mie‐type resonances is proposed and demonstrated. The propagation loss of the meta‐waveguides in the telecom spectral range is as low as 0.4 dB mm−1, exceeding the current record for Mie‐resonant waveguides by more than an order of magnitude. Furthermore, the meta‐waveguides support a negative group index over a broad spectral range of 60 nm and regions of vanishing and anomalous dispersion within the transmission band. Finally, it is shown that meta‐waveguide topologies can implement compact resonance‐protected waveguide bends and efficient splitters within just 320 nm propagation length. This work addresses the fundamental challenges of miniaturization, dispersion, and scattering control in integrated photonics and opens new opportunities for enhancing light–matter interactions, interfacing nanophotonic components, and developing nonlinear, ultrafast, and quantum optics resonant on‐chip devices.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3