Dislocation Suppresses Sidewall‐Surface Recombination of Micro‐LEDs

Author:

Park Jeong‐Hwan1ORCID,Pristovsek Markus2,Cai Wentao3,Cheong Heajeong1,Kang Chang‐Mo4,Lee Dong‐Seon5,Seong Tae‐Yeon6,Amano Hiroshi127

Affiliation:

1. Venture Business Laboratory Nagoya University Furo‐Cho, Chikusa‐ku Nagoya 464‐8603 Japan

2. Institute of Materials and Systems for Sustainability, Nagoya University Furo‐Cho, Chikusa‐ku Nagoya 464‐8601 Japan

3. Department of Electronics Nagoya University Furo‐Cho, Chikusa‐ku Nagoya 464‐8603 Japan

4. Next Generation LED Research Center Korea Photonics Technology Institute Gwangju 61007 Republic of Korea

5. School of Electrical Engineering and Computer Science Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea

6. Department of Materials Science and Engineering Korea University Seoul 02841 South Korea

7. Akasaki Research Center Nagoya University Furo‐Cho, Chikusa‐ku Nagoya 464‐8603 Japan

Abstract

AbstractNonradiative recombination rate that consists of dislocation‐related nonradiative recombination rate (A0) and surface recombination rate (As) is one of the major parameters determining the performance of microlight‐emitting diodes (µLEDs). Recent demonstrations improving the efficiency of blue InGaN or red AlGaInP µLEDs using specific methods such as atomic layer deposition or chemical treatment confirm the suppression of As. However, it is hardly found that those methods effectively improve the efficiency of red InGaN µLEDs so far. Here, it is discovered that the dislocation leads to an ineffective As. First, an intrinsic As degrades the external quantum efficiency (EQE) of blue InGaN µLEDs, resulting in EQE decreases with shrinking size. Second, panchromatic cathodoluminescence finds evidence that most of the carriers can be trapped before reaching the sidewall due to high A0. This results in shortened diffusion length of carriers and reduces the number of carriers reaching the sidewall. Consequently, the opposite trend of increasing EQE with shrinking size occurs in the case of red InGaN µLEDs due to an ineffective As. Furthermore, an 8.3 nm quantum well of InGaN with 13% Indium content that can reach a ≈690 nm wavelength at the low current is shown.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3