Affiliation:
1. Institute of Electronic Structure and Laser (IESL) Foundation for Research and Technology‐Hellas (FORTH) Heraklion Crete 70013 Greece
2. Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens 11635 Greece
3. Department of Physics University of Crete Heraklion 71003 Greece
Abstract
AbstractIn this article, the impact of the excited electromagnetic surface modes in a comprehensive investigation of the formation of laser‐induced periodic surface structures (LIPSS) is analyzed. It is demonstrated that the electromagnetic origin of low spatial‐frequency LIPSS (LSFL) is the frequency detuning between propagating and localized modes due to their coupling/hybridization. The influence of the pattern profile, inhomogeneity, and material type on the coupling strength, electric‐field spatial distribution, and associated near‐field scattering are highlighted. Exploiting the potential of the approach, evidence of a universal manifestation of LSFLs is provided irrespective of the material and the authors are able to predict and validate the experimentally‐proven lower limit of LSFL periodicity (i.e., λL/2, where λL stands for the laser wavelength). Furthermore, the analysis of the electromagnetic modes predicts that the periodicity of LSFL is practically unaffected by the laser fluence, while a suppression of LSFL at high excitation levels or large number of pulses is also predicted. It is also shown that plasmonic‐active materials are not necessary for LSFL formation perpendicular to polarization. Toward these directions, an important generic metric, namely the resonance quality factor, is additionally inserted. The approach can, thus, serve as a guide for controlling laser‐induced surface topography.
Funder
Horizon 2020 Framework Programme
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献