Integrating 2D Materials and Plasmonics on Lithium Niobate Platforms for Pulsed Laser Operation at the Nanoscale

Author:

Ramírez Mariola O.123ORCID,Molina Pablo12,Hernández‐Pinilla David12,López‐Polín Guillermo1,Ares Pablo234,Lozano‐Martín Lidia1,Yan Han5,Wang Yan5,Sarkar Soumya5,Al Shuhaib Jinan H.1,Leardini Fabrice12,Gómez‐Herrero Julio234,Chhowalla Manish5,Bausá Luisa E.123ORCID

Affiliation:

1. Dept. Física de Materiales Universidad Autónoma de Madrid Madrid 28049 Spain

2. Instituto Nicolás Cabrera Universidad Autónoma de Madrid Madrid 28049 Spain

3. Condensed Matter Physics Center (IFIMAC) Universidad Autónoma de Madrid Madrid 28049 Spain

4. Dept. Física de la Materia Condensada Universidad Autónoma de Madrid Madrid 28049 Spain

5. Dept. of Materials Science & Metallurgy University of Cambridge Cambridge CB3 0FS UK

Abstract

AbstractThe current need for coherent light sources for integrated (nano)photonics motivates the search for novel laser designs emitting at technologically relevant wavelengths with high‐frequency stability and low power consumption. Here, a new monolithic architecture that integrates monolayer MoS2 and chains of silver nanoparticles on a rare‐earth (Nd3+) doped LiNbO3 platform is developed to demonstrate Q‐switched lasing operation at the nanoscale. The localized surface plasmons provided by the nanoparticle chains spatially confine the gain generated by Nd3+ ions at subwavelength scales, and large‐area monolayer MoS2 acts as saturable absorber. As a result, an ultra‐compact coherent pulsed light source delivering stable train pulses with repetition rates of hundreds of kHz and pulse duration of 1 µs is demonstrated without the need of any voltage‐driven optical modulation. Moreover, the monolithic integration of the different elements is achieved without sophisticated processing, and it is compatible with LiNbO3‐based photonics. The results highlight the robustness of the approach, which can be extended to other 2D materials and solid‐state gain media. Potential applications in communications, quantum computing, or ultra‐sensitive sensing can benefit from the synergy of the materials involved in this approach, which provides a wealth of opportunities for light control at reduced scales.

Funder

H2020 European Research Council

Comunidad de Madrid

Agencia Estatal de Investigación

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3