Promoting Periodical Poling in Lithium Niobate Crystal Through Surface Acoustic Wave‐Induced Local Lattice Activation

Author:

Liu Qilu12,Song Yukun12,Bai Linyu1,Zhang Longxi1,Chen Xu1,Zhao Xuezhi1,Wang Fulei12,Liu Hong123ORCID,Wang Dongzhou23ORCID,Li Yanlu1,Sang Yuanhua1ORCID

Affiliation:

1. State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China

2. Jinan Institute of Quantum Technology Jinan 250101 China

3. Jinan Branch Hefei National Laboratory Jinan 250101 China

Abstract

AbstractAchieving precise construction of ferroelectric domain structure in lithium niobate (LN) crystals holds significance for expanding the applications of periodically poled lithium niobate (PPLN), especially in nonlinear frequency conversion. However, challenges exist during the application of electric field for poling, especially for small‐period PPLN crystals, where ferroelectric domains in LN crystals tend to unevenly expand laterally, making it hard to precisely control the domain structures. LN, as a piezoelectric crystal, has the capability to generate energy‐carrying surface acoustic waves (SAW). Herein, an method is presented to optimize the periodic poling process by integrating SAW and poling on a LN chip, which remarkably reduces the poling electric field by 10%, attributed to the enhanced local lattice vibrations during SAW propagation. The integrated SAW and poling chip achieves a 9 µm‐period PPLN crystal. Through second harmonic generation, a nonlinear light conversion from 1158 to 579 nm is realized, exhibiting a nonlinear optical efficiency up to 17.4%. This efficiency aligns with the theoretical prediction, validating the high‐quality domain structure. This integrated chip provides a unique opportunity for manipulating ferroelectric domain with high‐precision, benefiting a wide range of applications in nonlinear‐optics, ferroelectrics, and integrated optics.

Funder

Natural Science Foundation of Shandong Province

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3