Affiliation:
1. Department of Electrical and Systems Engineering Washington University St Louis MO 63130 USA
Abstract
AbstractOn‐chip optical nonreciprocity is one of the essential functions to fully advance the development of integrated optical systems, which remains technically challenging in many aspects. There is a great need for mechanisms and approaches to facilitate the large‐scale implementation of nonreciprocal light propagation. Recently, unconventional phenomena, such as chiral optical modes and directional light propagation, have been unraveled at exceptional points (EPs), which are unique degeneracies in the energy spectrum and eigenspace of non‐Hermitian systems. Here, this work theoretically and experimentally demonstrates that by steering a single microresonator with thermo‐optic nonlinearity to chiral EPs, nonreciprocal light propagation is achieved with an isolation ratio up to 24 dB and insertion loss less than 0.5 dB. The nonreciprocity is dependent on the chirality and could be optimized near the EPs. Their results pave new avenues for the nonreciprocal control of light propagation enabled by non‐Hermitian degeneracies and hold great potential for microscale and nanoscale on‐chip nonreciprocal devices.
Funder
National Science Foundation
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献