Highly‐Linear and Wavelength‐Tunable Frequency‐Modulated Continuous‐Wave Hybrid‐Integrated Laser

Author:

Liu Chuxin1ORCID,Guo Yuyao12,Xu Ruiyang1,Lu Liangjun12,Li Yu12,Chen Jianping12,Zhou Linjie12ORCID

Affiliation:

1. State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Key Lab of Navigation and Location Services, and Shanghai Institute for Advanced Communication and Data Science, Department of Electronic Engineering Shanghai Jiao Tong University Shanghai 200240 China

2. SJTU‐Pinghu Institute of Intelligent Optoelectronics Pinghu Zhejiang 314200 China

Abstract

AbstractFrequency‐sweeping laser sources play a critical role in the accurate 3D mapping of frequency‐modulated continuous‐wave (FMCW) LiDAR systems, whose chirp linearity greatly impacts the measurement precision. Although various pre‐distortion algorithms have been proposed to reduce chirp nonlinearity, these open‐loop methods can rapidly suppress the chirp nonlinearity but they are susceptible to environmental variations and often exhibit subpar performance in long‐range detection scenarios. In contrast, the electro–optical phase‐locked loop (EO‐PLL) serves as a real‐time linearizing solution for FMCW LiDAR, enabling high‐precision, high‐resolution, and long‐distance measurement capabilities. In this study, a III/V‐Si3N4 hybrid‐integrated external cavity laser (ECL) is used to generate an FMCW signal over a large wavelength tuning range of 68 nm. The maximum output optical power is 15.8 mW, and the intrinsic linewidth is 0.9 kHz. By modulating the phase shifter, an FMCW signal with a chirp bandwidth of 0.7 GHz is generated at a repetition rate of 1 kHz. The pre‐distortion algorithm is combined with the gain‐tunable EO‐PLL system to suppress the chirp nonlinearity and frequency noise across multiple wavelengths, leading to a remarkable improvement in range precision from 202 to 4.2 cm when targeting a distance of 200 m.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3