Chaotic Internal Dynamics of Dissipative Optical Soliton Molecules

Author:

Song Youjian1,Zou Defeng1,Gat Omri2,Hu Minglie1,Grelu Philippe3

Affiliation:

1. Ultrafast Laser Laboratory, Key Laboratory of Opto‐electronic Information Science and Technology of Ministry of Education, School of Precision Instruments and Opto‐electronics Engineering Tianjin University Tianjin 300072 China

2. Racah Institute of Physics Hebrew University of Jerusalem Jerusalem 91904 Israel

3. Laboratoire ICB UMR 6303 CNRS Université de Bourgogne 9 avenue A. Savary Dijon 21000 France

Abstract

AbstractWhen a laser cavity supports the propagation of several ultrashort pulses, these pulses can form compact bound states called soliton molecules. Soliton molecules are fascinating objects of nonlinear science, presenting striking analogies with their matter molecule counterparts. The relative timing and phase between the copropagating pulses are the most salient internal degrees of freedom of the soliton molecule. The soliton pair, composed of two identical pulses, constitutes the chief soliton molecule of fundamental interest. Its two major internal degrees of freedom allow self‐oscillating soliton molecules, which have been recurrently observed. However, despite theoretical predictions, the low‐dimensional chaotic dynamics of a soliton‐pair molecule remain elusive. This article reports the observation of chaotic soliton‐pair molecules within an ultrafast fiber laser by means of a direct measurement of the relative optical pulse separation with sub‐femtosecond precision in real time. Moreover, it demonstrates an all‐optical control of the chaotic dynamics followed by the soliton molecule by injection of a modulated optical signal that resynchronizes the internal periodic vibration of the soliton molecule. The fast error‐free switching between ordered and chaotic soliton molecules enabled by pump current sweeping and external injection highlights the potential prospects of all‐optical logic gates and chaotic communication using soliton molecules.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3