Affiliation:
1. Optical Sciences Centre Swinburne University of Technology Hawthorn VIC 3122 Australia
2. School of Science RMIT University Melbourne VIC 3000 Australia
3. Australian Research Council (ARC) Industrial Transformation Training Centre in Surface Engineering for Advanced Materials (SEAM) RMIT University Melbourne Victoria 3000 Australia
Abstract
AbstractIntegrated photonic devices operating via optical nonlinearities offer a powerful solution for all‐optical information processing, yielding processing speeds that are well beyond that of electronic processing as well as providing the added benefits of compact footprint, high stability, high scalability, and small power consumption. The increasing demand for high‐performance nonlinear integrated photonic devices has facilitated the hybrid integration of novel materials to address the limitations of existing integrated photonic platforms. Recently, graphene oxide (GO), with its large optical nonlinearity, high flexibility in altering its properties, and facile fabrication processes, has attracted significant attention, enabling many hybrid nonlinear integrated photonic devices with improved performance and novel capabilities. This paper reviews the applications of GO to nonlinear integrated photonics. First, an overview of GO's optical properties and the fabrication technologies needed for its on‐chip integration is provided. Next, the state‐of‐the‐art GO nonlinear integrated photonic devices are reviewed, followed by comparisons of the nonlinear optical performance of different integrated platforms incorporating GO as well as hybrid integrated devices including different kinds of 2D materials. Finally, the current challenges and future opportunities in this field are discussed.
Funder
Natural Science Foundation of Beijing Municipality
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献