Graphene Oxide for Nonlinear Integrated Photonics

Author:

Zhang Yuning1,Wu Jiayang1ORCID,Jia Linnan1,Qu Yang1,Yang Yunyi1,Jia Baohua23ORCID,Moss David J.1ORCID

Affiliation:

1. Optical Sciences Centre Swinburne University of Technology Hawthorn VIC 3122 Australia

2. School of Science RMIT University Melbourne VIC 3000 Australia

3. Australian Research Council (ARC) Industrial Transformation Training Centre in Surface Engineering for Advanced Materials (SEAM) RMIT University Melbourne Victoria 3000 Australia

Abstract

AbstractIntegrated photonic devices operating via optical nonlinearities offer a powerful solution for all‐optical information processing, yielding processing speeds that are well beyond that of electronic processing as well as providing the added benefits of compact footprint, high stability, high scalability, and small power consumption. The increasing demand for high‐performance nonlinear integrated photonic devices has facilitated the hybrid integration of novel materials to address the limitations of existing integrated photonic platforms. Recently, graphene oxide (GO), with its large optical nonlinearity, high flexibility in altering its properties, and facile fabrication processes, has attracted significant attention, enabling many hybrid nonlinear integrated photonic devices with improved performance and novel capabilities. This paper reviews the applications of GO to nonlinear integrated photonics. First, an overview of GO's optical properties and the fabrication technologies needed for its on‐chip integration is provided. Next, the state‐of‐the‐art GO nonlinear integrated photonic devices are reviewed, followed by comparisons of the nonlinear optical performance of different integrated platforms incorporating GO as well as hybrid integrated devices including different kinds of 2D materials. Finally, the current challenges and future opportunities in this field are discussed.

Funder

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3