On‐Chip Multimode WGM Microresonator with Cross‐Correlation Algorithm for Enhanced Sensing

Author:

Mao Wenbo1ORCID,Li Fu1,Jia Di12,Zhang Qian1,Yang Lan1ORCID

Affiliation:

1. Department of Electrical and Systems Engineering Washington University St Louis MO 63130 USA

2. School of Physics Nankai University Tianjin 300071 China

Abstract

AbstractOptical whispering‐gallery‐mode (WGM) microresonators emerge as a frontrunner for precision measurement due to their high sensitivity and compact footprint. They have demonstrated superior capabilities in detecting a wide range of objects, spanning from variations in temperature, humidity, and magnetic field, to local perturbations caused by viruses or nanoparticles. Traditional methods often rely on monitoring spectral changes in a single WGM resonance to extract the relevant information of sensing targets. However, in scenarios involving multiple sensing targets of interest (e.g., molecule detection in a temperature‐fluctuating environment), analyzing only one resonant mode may be insufficient, leading to inaccuracies or misinterpretations in deriving target information. To address this issue, a multimode‐based cross‐correlation algorithm is proposed to distinguish local perturbations from global environmental fluctuations. For validation, on‐chip silicon microresonators and pulley bus waveguides are integrated for robust multimode excitation. A proof‐of‐concept experiment demonstrates the effectiveness of this method in detecting nanoparticles in an environment with temperature changes. This approach showcases versatility and applicability in various optical sensors, introducing new prospects for achieving high‐sensitivity sensing through scalable integrated photonic platforms.

Funder

National Institutes of Health

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3