Low‐Temperature Sputtered Ultralow‐Loss Silicon Nitride for Hybrid Photonic Integration

Author:

Zhang Shuangyou1,Bi Toby12,Harder Irina1,Ohletz Olga1,Gannott Florentina1,Gumann Alexander1,Butzen Eduard1,Zhang Yaojing1,Del'Haye Pascal12ORCID

Affiliation:

1. Max Planck Institute for the Science of Light 91058 Erlangen Germany

2. Department of Physics Friedrich‐Alexander‐Universität Erlangen‐Nürnberg 91058 Erlangen Germany

Abstract

AbstractSilicon‐nitride‐on‐insulator (Si3N4) photonic circuits have seen tremendous advances in many applications, such as on‐chip frequency combs, Lidar, telecommunications, and spectroscopy. So far, the best film quality has been achieved with low pressure chemical vapor deposition (LPCVD) and high‐temperature annealing (1200°C). However, high processing temperatures pose challenges to the cointegration of Si3N4 with pre‐processed silicon electronic and photonic devices, lithium niobate on insulator (LNOI), and Ge‐on‐Si photodiodes. This limits LPCVD as a front‐end‐of‐line process. Here, ultralow‐loss Si3N4 photonics based on room‐temperature reactive sputtering is demonstrated. Propagation losses as low as 5.4 dB m−1 after 400°C annealing and 3.5 dB m−1 after 800°C annealing are achieved, enabling ring resonators with highest optical quality factors of > 10 million and an average quality factor of 7.5 million. To the best of the knowledge, these are the lowest propagation losses achieved with low temperature Si3N4. This ultralow loss enables the generation of microresonator soliton frequency combs with threshold powers of 1.1 mW. The introduced sputtering process offers full complementary metal oxide semiconductor (CMOS) compatibility with front‐end silicon electronics and photonics. This could enable hybrid 3D integration of low loss waveguides with integrated lasers and lithium niobate on insulator.

Funder

H2020 European Research Council

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3