Azimuthal Scanning Excitation Surface Plasmon Resonance Holographic Microscopy

Author:

Zhang Jiwei1ORCID,Wang Shuqi1,Li Wenrui1,Luo Xiangyuan1,Wang Lingke1,Mi Jingyu1,Dou Jiazhen2,Dai Siqing1,Lu Fanfan3,Li Peng1,Zhao Jianlin1ORCID

Affiliation:

1. Key Laboratory of Light Field Manipulation and Information Acquisition Ministry of Industry and Information Technology Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology Northwestern Polytechnical University Xi'an 710129 China

2. MOE Key Laboratory of Photonic Technology for Integrated Sensing and Communication Guangdong Provincial Key Laboratory of Information Photonics Technology, Institute of Advanced Photonics Technology, School of Information Engineering Guangdong University of Technology Guangzhou 510006 China

3. School of Artificial Intelligence, Optics and Electronics (iOPEN) Northwestern Polytechnical University Xi'an 710129 China

Abstract

AbstractSurface plasmon resonance (SPR) holographic microscopy exploits surface plasmon wave as illumination and acquires both SPR intensity and phase images. It detects extremely tiny variations of weakly interacting objects owing to high sensitivity and has been applied in cell biology, material science, surface chemistry, etc. However, it is very challenging to solve the problem of poor spatial resolution due to the transverse propagation of surface plasmon wave. In this paper, an azimuthal scanning excitation method is proposed in SPR holographic microscopy to improve the spatial resolution by engineering the Fourier spectra of SPR images from dual‐arc to circular shape. The study modulates the light field with spatial position, wavevector, and polarization to realize azimuthal scanning excitation of SPR. Systematic experiments of dielectric spheres, nanowires, two‐dimension materials, and complex nanostructure are conducted to show the resolution improvement with one order of magnitude, the higher detection sensitivity of SPR phase than that of SPR intensity, and the necessities of both of high‐resolution SPR intensity and phase images to retrieve sample information in certain scenarios. Benefiting from the high detection sensitivity and spatial resolution, the proposed microscopy will find wide applications in nanoparticle analysis, low‐dimensional material characterization, and imaging extremely thin or transparent samples.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3