Band Structure Engineering Induced Ultraviolet–Visible Emission Bulk Carbon Nitride with Near‐Unity Quantum Yield for Information Security

Author:

Zheng Huibin12,Lin Fei1,Chen Long1,Zhao Zhengui2,Shi Yarui3,Li Jianxin1,Song Haixiang1,Wang Yuyan2,Ning Honglong4,Zhang Junying24ORCID

Affiliation:

1. Henan Joint International Research Laboratory of Nanocomposite Sensing Materials School of Materials Science and Engineering Anyang Institute of Technology Anyang Henan 455000 China

2. School of Physics Beihang University Beijing 100191 China

3. School of Physics and Electrical Engineering Anyang Normal University Anyang Henan 455000 China

4. State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China

Abstract

AbstractIn the past few years, the photoluminescence (PL) efficiency of carbon nitride materials (CNM) in solution has been greatly improved. However, the PL efficiency of bulk CNM is still very limited. Here a bulk CNM of 2,5,8‐triamino‐tri‐s‐triazine (Melem) with efficient ultraviolet–visible emission is obtained via band structure engineering by simply modifying the calcining atmosphere in the solid‐state reaction. The as‐obtained Melem exhibits much enhanced PL with a near‐unity quantum yield of up to 98.3%, which, as far as it is known, is the highest among all CNM in bulk or solution. The enhanced PL is ascribed to the emission origin evolution from the vacancy‐defect‐dominated emission to the bandgap transition‐dominated emission. Benefiting from the high quantum yield and ultraviolet–visible emission, the as‐obtained Melem powder is successfully used for information security via silk‐screen printing. The information encrypted can be easily decrypted by a 254 nm ultraviolet lamp, while not decryptable by a 365 nm ultraviolet lamp. This research proposes a facile method for the development of highly efficient metal‐free Melem and will also provide significant guidance to the band structure engineering of carbon nitride‐based luminescent materials.

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3