Fast Predicting the Complex Nonlinear Dynamics of Mode‐Locked Fiber Laser by a Recurrent Neural Network with Prior Information Feeding

Author:

Pu Guoqing1,Liu Runmin2,Yang Hang1,Xu Yongxin1,Hu Weisheng1,Hu Minglie2,Yi Lilin1ORCID

Affiliation:

1. State Key Lab of Advanced Communication Systems and Networks School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China

2. Ultrafast Laser Laboratory Key Laboratory of Opto‐electronic Information Science and Technology of Ministry of Education College of Precision Instruments and Opto‐electronics Engineering Tianjin University Tianjin 300072 China

Abstract

AbstractAs an imperative method of investigating the internal mechanism of femtosecond lasers, traditional femtosecond laser modeling relies on the split‐step Fourier method (SSFM) to iteratively resolve the nonlinear Schrödinger equation suffering from the large computation complexity. To realize inverse design and optimization of femtosecond lasers, numerous simulations of mode‐locked fiber lasers with different cavity settings are required, further highlighting the time‐consuming problem induced by the large computation complexity. Here, a recurrent neural network is proposed to realize fast and accurate femtosecond mode‐locked fiber laser modeling. The generalization over different cavity settings is achieved via the proposed prior information feeding method. With the acceleration of GPU, the mean time of the artificial intelligence (AI) model inferring 500 roundtrips is less than 0.1 s, which is ≈146 times faster than the SSFM running on a CPU. The proposed AI‐enabled method is promising to become a standard approach to femtosecond laser modeling.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3