Observation of Analog Flatland Cherenkov Radiations on Metasurfaces

Author:

Xu Zhixia12ORCID,Bao Shuo2,Liu Junfeng1,Chang Jie1,Kong Xianghong3,Galdi Vincenzo4,Cui Tie Jun1ORCID

Affiliation:

1. State Key Laboratory of Millimeter Waves Southeast University Nanjing 210096 China

2. School of Information Science and Technology Dalian Maritime University Dalian 116026 China

3. Department of Electrical and Computer Engineering National University of Singapore Singapore 117583 Singapore

4. Fields & Waves Lab Department of Engineering University of Sannio Benevento I‐82100 Italy

Abstract

AbstractRecent theoretical studies have suggested the existence of a lower‐dimensional version of the Cherenkov radiation, known as “flatland Cherenkov radiation” (FCR). FCR is generated by leakage from a surface‐wave waveguide while being entirely confined in a plane. Here, a metasurface platform is proposed for generating and observing FCR, which is characterized by alternated regions of capacitive and inductive surface impedance, supporting transverse electric (TE) and magnetic (TM) surface waves (SWs), respectively. For experimental demonstration, a microwave setup is presented, and measured results are compared with numerical simulations and theoretical predictions. The study shows that the phase velocities of different SWs can be controlled by structural designs, and suitably fast TE SWs can excite FCR in the form of slower TM SWs. FCR has unique properties such as directionality, tunability, and subwavelength confinement. The proposed platform has important potential to enable nanophotonic applications based on 2D optics, such as agile waveguiding and scanning.

Funder

National Natural Science Foundation of China

State Key Laboratory of Millimeter Waves

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3