Photoirradiation‐Gated Excitation‐Dependent Room‐Temperature Phosphorescence in Through‐Space Charge Transfer Molecules

Author:

Li Jiangang1,Xing Guohui1,Wu Jilong1,Zhang Ye1,Wei Juan1,Liu Shujuan1,Ma Yun1,Zhao Qiang12ORCID

Affiliation:

1. State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 P. R. China

2. College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 P. R. China

Abstract

AbstractOrganic materials showing reversible changes in persistent room‐temperature phosphorescence (RTP) upon exposure to external stimuli have attracted considerable attention in recent years. One potentially groundbreaking development in this area is the introduction of the gating concept for organic persistent RTP materials. This refers to a material where a desired responsive ability only occurs when it is triggered by a specific stimulus, but it remains a formidable challenge. In this study, photoirradiation‐gated excitation‐dependent (Ex‐De) persistent RTP is achieved. A series of molecules, triphenylphosphine and carbazole derivatives connected through flexible carbon chains, are designed and prepared. Upon removal of ultraviolet (UV) irradiation, all these compounds doped polyvinyl alcohol (PVA) films exhibit obvious blue or green afterglow RTP. Among them, (2‐(9H‐[3,9′‐bicarbazol]−9‐yl)ethyl)triphenylphosphonium bromide (TPP‐2C‐Cz) doped PVA film initially exhibits blue persistent RTP after removal of 300 nm excitation but no RTP upon ceasing 365 nm irradiation. Interestingly, upon UV irradiation with a power density of 0.05 W cm−2 (UVA) for 50 min, the Ex‐De RTP behavior of TPP‐2C‐Cz doped PVA film is activated. Eventually, photoirradiation‐gated Ex‐De afterglow emission will be used for a wide range of applications, including the quantitative determination of UV irradiation dose and the permanent record of UV irradiation history, and read on‐demand.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3