Longitudinal and Transverse Optical Beam Shifts Show Non‐separability

Author:

Modak Niladri1ORCID,Ashutosh Swain1ORCID,Guchhait Shyamal1,Das Sayantan1ORCID,Pan Alok Kumar2ORCID,Ghosh Nirmalya13ORCID

Affiliation:

1. Department of Physical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India

2. Physics Department National Institute of Technology Patna Patna 800005 India

3. Centre of Excellence in Space Sciences India Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India

Abstract

AbstractUnder the introduction of any tilted interface in its trajectory, an optical beam experiences polarization‐dependent deflections in the longitudinal and transverse directions with respect to the plane of incidence. The physics of such optical beam shifts are connected to profound universal wave phenomena governed by the fine interference effects of wave packets and have opened up avenues toward metrological applications. Here, the inherent non‐separability of the longitudinal and transverse optical beam shifts is revealed by considering a rather simple case of a partially reflecting Gaussian laser beam from a dielectric interface. This non‐separability appears substantially at some particular regions in the corresponding experimental parameter space. This manifests as a position–position non‐separable state of classical light field. The tunability of the related experimental parameters offers control over the degree of non‐separability. These findings are expected to be a step forward in the exploration of optical beam shifts and a number of analogous universal phenomena. The initial observation also indicates its practical impact on metrology and generation of high‐quality tunable position–position non‐separable states of classical light fields.

Funder

Science and Engineering Research Board

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3