Affiliation:
1. Department of Atomic and Molecular Physics Manipal Academy of Higher Education Manipal Karnataka 576104 India
2. Centre for Applied Nanosciences (CANs) Manipal Academy of Higher Education Manipal Karnataka 576104 India
Abstract
AbstractIn spite of the long‐term awareness of the conversion of light to heat even in materials with low absorption coefficient via the photothermal effect and consequent usage of the effect to evaluate thermo‐optic properties of the materials, only recently has the thermal field created via photon‐to‐phonon conversion been exploited for manipulation of colloidal objects as well as living cells. As compared to conventional direct photon‐assisted manipulation via optical tweezers, the optothermal manipulation technique employs much lower optical source power and can manipulate particles over a long range. In this review, the working mechanisms, concepts, and applications of a series of recently established optothermal techniques are discussed for the manipulation of diverse species including micro/nanoparticles, biological cells, molecules, and micelles in various fluidic environments. The physical mechanism of the optical manipulation that relies on the coordinated action of thermal convection, Marangoni convection, thermophoresis, thermoelectricity, depletion attraction, and thermo‐osmotic flow is discussed in detail. With their low‐power operation, diverse functionalities, and simple optics employed, optothermal manipulation techniques are increasingly finding a wide range of applications in colloidal science, life sciences, materials science, and nanoscience, as well as in the developments of colloidal functional devices and nanomedicine.
Funder
Manipal Academy of Higher Education
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献