Broadband Dispersive‐Wave Emission Coupled with Two‐Stage Soliton Self‐Compression in Gas‐Filled Anti‐Resonant Hollow‐Core Fibers

Author:

Pan Jinyu123,Huang Zhiyuan14ORCID,Chen Yifei1,Luo Zhuozhao4,Yu Fei35,Wu Dakun35,Chen Tiandao12,Liu Donghan142,Yu Yue123,He Wenbin4,Jiang Xin4,Pang Meng143,Leng Yuxin13ORCID,Li Ruxin1

Affiliation:

1. State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra‐Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences Shanghai 201800 China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China

3. Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China

4. Russell Centre for Advanced Lightwave Science Shanghai Institute of Optics and Fine Mechanics and Hangzhou Institute of Optics and Fine Mechanics Hangzhou 311421 China

5. Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences Shanghai 201800 China

Abstract

AbstractThe underlying mechanism of broadband dispersive‐wave emission within a resonance band of gas‐filled anti‐resonant hollow‐core fiber is studied. Both numerical and experimental results unveiled that the pump pulse with a soliton order of ≈3, launched into the hollow‐core fiber, experienced two stages of pulse compression, resulting in a multi‐peak structure of the emitted dispersive‐wave spectrum. Over the first‐stage pulse compression, a sharp increase of the pulse peak power triggers the first time of dispersive‐wave emission, and simultaneously causes the soliton frequency blue‐shift due to soliton‐plasma interactions. As the central frequency of the blue‐shifting soliton approaches to a resonance band of the hollow‐core fiber, it experiences a fast‐decreasing dispersion value in the fiber waveguide, resulting in the second stage of pulse compression. The second‐stage pulse compression triggers the second time of dispersive‐wave emission with a phase‐matched frequency slightly lower than that at the first stage. Multi‐peak spectra of the output dispersive‐waves and their formation dynamics can be understood using a delicate and unique coupling mechanism among three nonlinear effects including multi‐stage soliton compression, soliton‐plasma interaction, and phase‐matched dispersive‐wave emission. The output broadband dispersive‐wave, exhibiting good coherence and stability, can be potentially compressed to sub‐30 fs duration using a precise chirp‐compensation technique.

Funder

National Natural Science Foundation of China

National Postdoctoral Program for Innovative Talents

China Postdoctoral Science Foundation

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3