Single Shot Generation of High‐Aspect‐Ratio Nano‐Rods from Sapphire by Ultrafast First Order Bessel Beam

Author:

Belloni Valeria Viviana1ORCID,Hassan Mostafa1,Furfaro Luca1,Giust Remo1,Seydoux‐Guillaume Anne‐Magali2,Sao‐Joao Sergio3,Courvoisier Francois1

Affiliation:

1. FEMTO‐ST institute Univ. Franche‐Comté and CNRS 15B avenue des Montboucons Besançon 25030 France

2. Université Jean Monnet, CNRS Laboratoire de Géologie de Lyon ‐ Terre, Planètes, Environnement Saint Etienne F‐42023 France

3. Mines Saint‐Etienne Univ. Lyon CNRS, UMR 5307 LGF, Centre SMS Saint‐Etienne F‐42023 France

Abstract

AbstractEngineering the polarization and spatial phase of ultrafast laser pulses represents a compelling strategy for enhancing control over laser–matter interaction and enabling rapid and innovative nano‐fabrication processes. Here, the single‐shot, ultrafast laser fabrication of high‐aspect‐ratio, vertically standing nano‐pillars with a diameter of ≈800 nm and height up to 15 µm on the surface of sapphire, is reported. To achieve this, the distinctive properties of diffraction‐free, first‐order Bessel beams endowed with either radial or azimuthal polarization distributions, are harnessed under tight focusing conditions. The highly intense laser–matter interaction in this configuration generates a tubular‐shaped, high‐pressure field beneath the material surface, leading to the rapid expulsion of material across the surface. Three distinct regimes for the pillar generation are identified in addition to a mechanism based on the Rayleigh‐Plateau theory that explains the distinct morphological regimes observed. The findings not only shed light on the underlying physical mechanisms of intense excitation of transparent dielectrics but also offer exciting prospects for the rapid fabrication of positive nano‐structures and material compression across various fields of application.

Funder

Agence Nationale de la Recherche

Horizon 2020 Framework Programme

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3