2D Transition Metal Carbides (MXenes) for Third Order Nonlinear Optics: Status and Prospects

Author:

Wang Yiduo1,Wang Yingwei1ORCID,He Jun1

Affiliation:

1. Hunan Key Laboratory of Nanophotonics and Devices School of Physics and Electronics Central South University 932 South Lushan Road Changsha Hunan 410083 P. R. China

Abstract

AbstractThe family of 2D transition metal carbides, nitrides, and carbonitrides (MXenes) has attracted an enormous amount of attention due to their tunable optical, electronic, electrochemical, and mechanical properties. Recently, a new branch of MXenes materials research has emerged that is exploring and engineering the intrinsic optical response of MXenes, resulting in compact nonlinear optical (NLO) devices. As a novel 2D materials system, MXenes not only exhibit common advantages of classical 2D materials for NLO applications but also demonstrate their unique superiority, such as high yield and scalable synthesis, good stability, switchable NLO response, etc. Here, a fundamental overview of MXenes nonlinear optics is provided, covering everything from MXenes synthesis to linear and NLO properties and NLO applications. The synthesis method and its influence on the MXenes structures and morphology are discussed, which dominated the linear optics of MXenes. Then, the third‐order NLO properties and carrier dynamics of MXenes, from basic theory to experimental results, are elaborated. Their NLO applications, including ultrashort laser pulse, single‐frequency laser generation, all‐optical phase modulation, wavelength modulation, and passive photonic diodes, are also highlighted. Finally, the current challenges and an outlook for future MXenes NLO research are proposed.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3