Photonic Neural Network Fabricated on Thin Film Lithium Niobate for High‐Fidelity and Power‐Efficient Matrix Computation

Author:

Zheng Yong12,Wu Rongbo2ORCID,Ren Yuan12,Bao Rui12,Liu Jian12,Ma Yu3,Wang Min2,Cheng Ya12345

Affiliation:

1. State Key Laboratory of Precision Spectroscopy East China Normal University Shanghai 200062 China

2. The Extreme Optoelectromechanics Laboratory (XXL) School of Physics and Electronic Science East China Normal University Shanghai 200241 China

3. State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra‐intense Laser Science Shanghai Institute of Optics and Fine Mechanics (SIOM) Chinese Academy of Sciences (CAS) Shanghai 201800 China

4. Collaborative Innovation Center of Extreme Optics Shanxi University Taiyuan 030006 China

5. Collaborative Innovation Center of Light Manipulations and Applications Shandong Normal University Jinan 250358 China

Abstract

AbstractPhotonic neural networks (PNNs) have emerged as a promising platform to address the energy consumption issue that comes with the advancement of artificial intelligence technology, and thin film lithium niobate (TFLN) offers an attractive solution as a material platform mainly for its combined characteristics of low optical loss and large electro‐optic (EO) coefficients. Here, the first implementation of an EO tunable Mach‐Zehnder interferometer (MZI) mesh‐based TFLN PNN is presented. The device features ultra‐high fidelity, high computation speed, and exceptional power efficiency. The performance of the device is benchmarked with several deep learning missions including in situ training of Circle and Moons nonlinear datasets classification, Iris flower species recognition, and handwriting digits recognition. The work paves the way for sustainable up‐scaling of high‐speed, energy‐efficient PNNs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Reference56 articles.

1. Deep learning

2. Neural networks: An overview of early research, current frameworks and new challenges

3. A.Graves A.Mohamed G.Hinton 2013 IEEE Int. Conf. Acoust. Speech Signal Process IEEE New York2013.

4. Mastering the game of Go without human knowledge

5. J.Sevilla L.Heim A.Ho T.Besiroglu M.Hobbhahn P.Villalobos 2022 Int. Jt. Conf. Neural Networks IEEE New York2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3