Spectroscopic Signatures of Plasmonic Near‐Fields on High‐Harmonic Emission

Author:

Jalil Sohail A.1,Awan Kashif M.23,Baxter Joshua45,Bart Graeme5,Purschke David N.1,Fennel Thomas6,Villeneuve David M.1,Staudte André1,Berini Pierre457,Brabec Thomas5,Ramunno Lora45,Vampa Giulio1ORCID

Affiliation:

1. Joint Attosecond Science Laboratory National Research Council of Canada and University of Ottawa Ottawa Ontario K1N 0R6 Canada

2. Institute of Materials Science and Engineering Washington University in St. Louis St. Louis MO 63130 USA

3. Department of Mechanical Engineering and Materials Science Washington University in St. Louis St. Louis MO 63130 USA

4. Centre for Research in Photonics University of Ottawa 25 Templeton Street Ottawa Ontario K1N 6N5 Canada

5. Department of Physics University of Ottawa 150 Louis Pasteur Ottawa Ontario K1N 6N5 Canada

6. Institute for Physics University of Rostock 18051 Rostock Germany

7. School of Electrical Engineering and Computer Science University of Ottawa 800 King Edward Avenue Ottawa Ontario K1N 6N5 Canada

Abstract

AbstractIntense laser fields can reveal the attosecond and femtosecond response of matter in the emitted photoelectrons and high‐harmonic photons. The complementary perspective offered by these two messengers is well explored in gas molecules and, more recently, in bulk solids, where both electron emission and high‐order harmonics have been utilized to probe the laser‐matter interaction. In nanoscale solids, electron emission provides a wealth of information about the localized and inhomogeneous near fields around the nanoparticles. Here, it is shown experimentally that inhomogeneous fields also affect high‐order harmonics. Specifically, the experiment reveals strong indications that the field gradient of a nanoscale plasmonic hotspot found inside a Si crystal induces the emission of even‐order high harmonics from the crystal itself. This demonstration extends the complementary electron‐photon perspective on attosecond science to nanoscale systems.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3