Colorimetric evaluation of 3D printing polymers exposed to accelerated aging for Cultural Heritage applications

Author:

Higueras María1ORCID,Collado‐Montero Francisco José2,Medina Víctor Jesús2

Affiliation:

1. Department of Painting and Conservation‐Restoration, Faculty of Fine Arts Complutense University of Madrid Madrid Spain

2. Department of Painting, Faculty of Fine Arts University of Granada Granada Spain

Abstract

Abstract3D printing has become a widespread technology that allows the creation of physical objects from different materials. The conservation and restoration of Cultural Heritage field has recently introduced this technology as a complement to its traditional methods. However, the main concern in the application of 3D printing in this context is the long‐term behavior of the materials used. The key objective of this research was the identification of the suitability of 3D printing filaments for conservation purposes. The methodology followed in this study consisted of a selection of 13 3D printing filaments for Fused Deposition Modeling (FDM) technologies, which were tested and exposed to an accelerated aging procedure. In order to classify and recommend the materials that present better results, the properties of color, the glossiness, the pH and the Volatile Organic Compounds emission were investigated. This paper collects the results of the analyses carried out, focusing discussion on the colorimetric behavior. The results demonstrate the usefulness of some of the materials studied, highlighting the performance of EP as one of the most stable and reliable materials while Flex is one of the most changeable ones in the Cultural Heritage context. Even though this research provides an overview of the aging of the materials studied, further analyses should be performed to understand the chemical composition and its behavior when exposed to a long‐lasting aging process.

Funder

Universidad de Granada

Ministerio de Ciencia e Innovación

Publisher

Wiley

Subject

General Chemical Engineering,General Chemistry,Human Factors and Ergonomics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3