How well do 3D‐printed tissue mimics represent the complex mechanics of biological soft tissues? An example study with Stratasys' cardiovascular TissueMatrix materials

Author:

Bechtel Grace N.1,Kostelnik Colton J.1,Rausch Manuel K.123ORCID

Affiliation:

1. Department of Biomedical Engineering The University of Texas at Austin Austin Texas USA

2. Department of Aerospace Engineering & Engineering Mechanics The University of Texas at Austin Austin Texas USA

3. Department of Mechanical Engineering The University of Texas at Austin Austin Texas USA

Abstract

AbstractTissue mimicking materials are designed to represent real tissue in applications such as medical device testing and surgical training. Thanks to progress in 3D‐printing technology, tissue mimics can now be easily cast into arbitrary geometries and manufactured with adjustable material properties to mimic a wide variety of tissue types. However, it is unclear how well 3D‐printable mimics represent real tissues and their mechanics. The objective of this work is to fill this knowledge gap using the Stratasys Digital Anatomy 3D‐Printer as an example. To this end, we created mimics of biological tissues we previously tested in our laboratory: blood clots, myocardium, and tricuspid valve leaflets. We printed each tissue mimic to have the identical geometry to its biological counterpart and tested the samples using identical protocols. In our evaluation, we focused on the stiffness of the tissues and their fracture toughness in the case of blood clots. We found that the mechanical behavior of the tissue mimics often differed substantially from the biological tissues they aim to represent. Qualitatively, tissue mimics failed to replicate the traditional strain‐stiffening behavior of soft tissues. Quantitatively, tissue mimics were stiffer than their biological counterparts, especially at small strains, in some cases by orders of magnitude. In those materials in which we tested toughness, we found that tissue mimicking materials were also much tougher than their biological counterparts. Thus, our work highlights limitations of at least one 3D‐printing technology in its ability to mimic the mechanical properties of biological tissues. Therefore, care should be taken when using this technology, especially where tissue mimicking materials are expected to represent soft tissue properties quantitatively. Whether other technologies fare better remains to be seen.

Funder

National Science Foundation

Office of Naval Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3