Bone‐targeting polyphosphodiesters that promote osteoblastic differentiation

Author:

Kiyono Kenjiro1,Mabuchi Shun1,Otaka Akihisa23,Iwasaki Yasuhiko13ORCID

Affiliation:

1. Department of Chemistry and Materials Engineering Kansai University Suita‐shi Osaka Japan

2. Department of Biomedical Engineering National Cerebral and Cardiovascular Center Research Institute Suita‐shi Osaka Japan

3. ORDIST Kansai University Suita‐shi Osaka Japan

Abstract

AbstractPolymers for pharmaceutical use have been attractive in medical treatments because of the conjugation of multifunctional components and their long circulation time in the blood stream. Bone‐targeted drug delivery systems are also no exceptional, and several polymers have been proposed for the treatment of bone diseases, such as cancer metastasis and osteoporosis. Herein, we report that polyphosphodiesters (PPDEs) have a potential to enhance osteoblastic differentiation, and they have a targeting ability to bone tissues in vivo. Two types of PPDEs, poly (ethylene sodium phosphate) (PEP•Na) and poly (propylene sodium phosphate) (PPP•Na), have been synthesized. Regardless of the alkylene structure in the main chain of PPDEs, the gene expression of osteoblast‐specific transcription factors and differentiation markers of mouse osteoblastic‐like cells (MC3T3‐E1 cells) cultured in a differentiation medium was significantly upregulated by the addition of PPDEs. Moreover, it was also clarified that the signaling pathway related to cytoplasmic calcium ions was activated by PPDEs. The mineralization of MC3T3‐E1 cells has a similar trend with its gene expression and is synergistically enhanced by PPDEs with β‐glycerophosphate. The biodistribution of fluorescence‐labeled PPDEs was also determined after intravenous injection in mice. PPDEs accumulated well in the bone through the blood stream, whereas polyphosphotriesters (PPTEs) tended to be excreted from the kidneys. Hydrophilic PEP•Na showed a superior bone affinity as compared with PPP•Na. PPDEs could be candidate polymers for the restoration of bone remodeling and bone‐targeting drug delivery platforms.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Metals and Alloys,Biomedical Engineering,Biomaterials,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3