Affiliation:
1. School of Ceramic Engineering Institute of Engineering, Suranaree University of Technology 111 University Avenue, Muang District Nakhon Ratchasima 3000 Thailand
2. Department of Materials and Henry Royce Institute The University of Manchester Manchester M13 9PL UK
Abstract
AbstractIn this work, three different modified cements, control apatite/beta‐tricalcium phosphate cement (CPC), polymeric CPC (p‐CPC), and bioactive glass added polymeric cement (p‐CPC/BG) were evaluated regarding their physical properties and the responses of primary human osteoblast cells (HObs) and mesenchymal stem cells (MSCs). Although polyacrylic acid (PAA) increased compressive strength and Young's modulus of the cement, it could cause poor apatite phase formation, a prolonged setting time, and a lower degradation rate. Consequently, bioactive glass (BG) was added to PAA/cement to improve its physical properties, such as compressive strength, Young's modulus, setting time, and degradation. For in vitro testing, HObs viability was assessed under two culture systems with cement‐preconditioned medium (indirect) and with cement (direct). HObs viability was examined in direct contact with cements treated by different prewashing conditions. HObs presented a more well spread morphology on cement soaked in medium overnight, as compared to other cements with no treatment and washing in PBS. In addition, the proliferation, differentiation, and total collagen production of both HObs and MSCs adhered to the cement were detected. Cells showed excellent proliferation on PAA/cement and PAA/BG/cement. Furthermore, the higher released Si ion and lower acidosis of PAA/BG/cement‐conditioned medium resulted in an increase in osteogenic differentiation (HObs and MSCs) and enhanced collagen production (HObs in osteogenic medium and MSCs in control medium). Therefore, our findings suggest that BG incorporated PAA/apatite/β‐TCP cement could be a promising formula for bone repair applications.
Funder
Suranaree University of Technology
Thailand Science Research and Innovation
University of Manchester
Subject
Metals and Alloys,Biomedical Engineering,Biomaterials,Ceramics and Composites
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献