Scaffolds containing GAG‐mimetic cellulose sulfate promote TGF‐β interaction and MSC Chondrogenesis over native GAGs

Author:

Menezes Roseline1,Sherman Lauren2,Rameshwar Pranela2,Arinzeh Treena Livingston1ORCID

Affiliation:

1. Department of Biomedical Engineering New Jersey Institute of Technology Newark New Jersey USA

2. Department of Medicine Rutgers University School of Medicine Newark New Jersey USA

Abstract

AbstractCartilage tissue engineering strategies seek to repair damaged tissue using approaches that include scaffolds containing components of the native extracellular matrix (ECM). Articular cartilage consists of glycosaminoglycans (GAGs) which are known to sequester growth factors. In order to more closely mimic the native ECM, this study evaluated the chondrogenic differentiation of mesenchymal stem cells (MSCs), a promising cell source for cartilage regeneration, on fibrous scaffolds that contained the GAG‐mimetic cellulose sulfate. The degree of sulfation was evaluated, examining partially sulfated cellulose (pSC) and fully sulfated cellulose (NaCS). Comparisons were made with scaffolds containing native GAGs (chondroitin sulfate A, chondroitin sulfate C and heparin). Transforming growth factor‐beta3 (TGF‐β3) sequestration, as measured by rate of association, was higher for sulfated cellulose‐containing scaffolds as compared to native GAGs. In addition, TGF‐β3 sequestration and retention over time was highest for NaCS‐containing scaffolds. Sulfated cellulose‐containing scaffolds loaded with TGF‐β3 showed enhanced chondrogenesis as indicated by a higher Collagen Type II:I ratio over native GAGs. NaCS‐containing scaffolds loaded with TGF‐β3 had the highest expression of chondrogenic markers and a reduction of hypertrophic markers in dynamic loading conditions, which more closely mimic in vivo conditions. Studies also demonstrated that TGF‐β3 mediated its effect through the Smad2/3 signaling pathway where the specificity of TGF‐β receptor (TGF‐ βRI)‐phosphorylated SMAD2/3 was verified with a receptor inhibitor. Therefore, studies demonstrate that scaffolds containing cellulose sulfate enhance TGF‐β3‐induced MSC chondrogenic differentiation and show promise for promoting cartilage tissue regeneration.

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases

National Institutes of Health

National Science Foundation

Publisher

Wiley

Subject

Metals and Alloys,Biomedical Engineering,Biomaterials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3