Fighting fibrin with fibrin: Vancomycin delivery into coagulase‐mediated Staphylococcus aureus biofilms via fibrin‐based nanoparticle binding

Author:

Scull Grant12,Aligwekwe Adrian12,Rey Ysabel12,Koch Drew23,Nellenbach Kimberly12,Sheridan Ana12,Pandit Sanika12,Sollinger Jennifer12,Pierce Joshua G.24,Flick Matthew J.56,Gilbertie Jessica7,Schnabel Lauren23,Brown Ashley C.126ORCID

Affiliation:

1. Joint Department of Biomedical Engineering NC State University and UNC‐Chapel Hill Raleigh North Carolina USA

2. Comparative Medicine Institute NC State University Raleigh North Carolina USA

3. College of Veterinary Medicine NC State University Raleigh North Carolina USA

4. Department of Chemistry NC State University Raleigh North Carolina USA

5. UNC‐Chapel Hill School of Medicine Chapel Hill North Carolina USA

6. Blood Research Center UNC‐Chapel Hill Chapel Hill NC USA

7. Department of Microbiology and Immunology Edward Via College of Osteopathic Medicine Blacksburg Virginia USA

Abstract

AbstractStaphylococcus aureus skin and soft tissue infection is a common ailment placing a large burden upon global healthcare infrastructure. These bacteria are growing increasingly recalcitrant to frontline antimicrobial therapeutics like vancomycin due to the prevalence of variant populations such as methicillin‐resistant and vancomycin‐resistant strains, and there is currently a dearth of novel antibiotics in production. Additionally, S. aureus has the capacity to hijack the host clotting machinery to generate fibrin‐based biofilms that confer protection from host antimicrobial mechanisms and antibiotic‐based therapies, enabling immune system evasion and significantly reducing antimicrobial efficacy. Emphasis is being placed on improving the effectiveness of therapeutics that are already commercially available through various means. Fibrin‐based nanoparticles (FBNs) were developed and found to interact with S. aureus through the clumping factor A (ClfA) fibrinogen receptor and directly integrate into the biofilm matrix. FBNs loaded with antimicrobials such as vancomycin enabled a targeted and sustained release of antibiotic that increased drug contact time and reduced the therapeutic dose required for eradicating the bacteria, both in vitro and in vivo. Collectively, these findings suggest that FBN‐antibiotic delivery may be a novel and potent therapeutic tool for the treatment of S. aureus biofilm infections.

Funder

National Institutes of Health

National Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3