Affiliation:
1. School of Chemical, Biological, and Environmental Engineering Oregon State University Corvallis Oregon USA
2. College of Pharmacy Oregon State University Corvallis Oregon USA
Abstract
AbstractCervical cancer is the second leading cause of cancer‐related death in women under 40 and is one of the few cancers to have an increased incidence rate and decreased survival rate over the last 10 years. One in five patients will have recurrent and/or distant metastatic disease and these patients face a 5‐year survival rate of less than 17%. Thus, there is a pressing need to develop new anticancer therapeutics for this underserved patient population. However, the development of new anticancer drugs remains a challenge, as only 7% of novel anticancer drugs are approved for clinical use. To facilitate identification of novel and effective anticancer drugs for cervical cancer, we developed a multilayer multicellular platform of human cervical cancer cell lines and primary human microvascular endothelial cells that interfaces with high throughput drug screening methods to evaluate the anti‐metastatic and anti‐angiogenic drug efficacy simultaneously. Through the use of design of experiments statistical optimization, we identified the specific concentrations of collagen I, fibrinogen, fibronectin, GelMA, and PEGDA in each hydrogel layer that maximized both cervical cancer invasion and endothelial microvessel length. We then validated the optimized platform and assessed its viscoelastic properties. Finally, using this optimized platform, we conducted a targeted drug screen of four clinically relevant drugs on two cervical cancer cell lines. Overall, this work provides a valuable platform that can be used to screen large compound libraries for mechanistic studies, drug discovery, and precision oncology for cervical cancer patients.
Funder
National Institute of Environmental Health Sciences
Subject
Metals and Alloys,Biomedical Engineering,Biomaterials,Ceramics and Composites
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献