Implant surface physicochemistry affects keratinocyte hemidesmosome formation

Author:

Raptopoulos Michail12,Fischer Nicholas G.1ORCID,Aparicio Conrado134ORCID

Affiliation:

1. Minnesota Dental Research Center for Biomaterials and Biomechanics University of Minnesota Minneapolis Minnesota USA

2. Division of Periodontology, Department of Developmental and Surgical Sciences University of Minnesota Minneapolis Minnesota USA

3. Basic and Translational Research Division, Department of Odontology UIC Barcelona – Universitat Internacional de Catalunya Barcelona Spain

4. IBEC ‐ Institute for BIoengineering of Catalonia BIST‐Barcelona Institute of Science and Technology Barcelona Spain

Abstract

AbstractPrevious studies have shown hydrophilic/hydrophobic implant surfaces stimulate/hinder osseointegration. An analogous concept was applied here using common biological functional groups on a model surface to promote oral keratinocytes (OKs) proliferation and hemidesmosomes (HD) to extend implant lifespans through increased soft tissue attachment. However, it is unclear what physicochemistry stimulates HDs. Thus, common biological functional groups (NH2, OH, and CH3) were functionalized on glass using silanization. Non‐functionalized plasma‐cleaned glass and H silanization were controls. Surface modifications were confirmed with X‐ray photoelectron spectroscopy and water contact angle. The amount of bovine serum albumin (BSA) and fibrinogen, and BSA thickness, were assessed to understand how adsorbed protein properties were influenced by physicochemistry and may influence HDs. OKs proliferation was measured, and HDs were quantified with immunofluorescence for collagen XVII and integrin β4. Plasma‐cleaned surfaces were the most hydrophilic group overall, while CH3 was the most hydrophobic and OH was the most hydrophilic among functionalized groups. Modification with the OH chemical group showed the highest OKs proliferation and HD expression. The OKs response on OH surfaces appeared to not correlate to the amount or thickness of adsorbed model proteins. These results reveal relevant surface physicochemical features to favor HDs and improve implant soft tissue attachment.

Funder

National Institute of Dental and Craniofacial Research

Publisher

Wiley

Subject

Metals and Alloys,Biomedical Engineering,Biomaterials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3