A user's guide to degradation testing of polyethylene glycol‐based hydrogels: From in vitro to in vivo studies

Author:

Rodriguez‐Rivera Gabriel J.1ORCID,Green Mykel2ORCID,Shah Vani2,Leyendecker Kathleen3,Cosgriff‐Hernandez Elizabeth2ORCID

Affiliation:

1. McKetta Department of Chemical Engineering The University of Texas Austin Texas USA

2. Department of Biomedical Engineering The University of Texas Austin Texas USA

3. Department of Mechanical Engineering The University of Texas Austin Texas USA

Abstract

AbstractPoly(ethylene glycol) (PEG)‐based hydrogels have gained significant attention in the field of biomedical applications due to their versatility and antifouling properties. Acrylate‐derivatized PEG hydrogels (PEGDA) are some of the most widely studied hydrogels; however, there has been debate around the degradation mechanism and predicting resorption rates. Several factors influence the degradation rate of PEG hydrogels, including backbone and endgroup chemistry, macromer molecular weight, and polymer concentration. In addition to hydrogel parameters, it is necessary to understand the influence of biological and environmental conditions (e.g., pH and temperature) on hydrogel degradation. Rigorous methods for monitoring degradation in both in vitro and in vivo settings are also critical to hydrogel design and development. Herein, we provide guidance on tailoring PEG hydrogel chemistry to achieve target hydrolytic degradation kinetics for both resorbable and biostable applications. A detailed overview of accelerated testing methods and hydrogel degradation characterization is provided to aid researchers in experimental design and interpreting in vitro–in vivo correlations necessary for predicting hydrogel device performance.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Metals and Alloys,Biomedical Engineering,Biomaterials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3