Cellular composition modifies the biological properties and stability of platelet rich plasma membranes for tissue engineering

Author:

Anitua Eduardo1,Zalduendo Mar1,Troya María1,Tierno Roberto1,Alkhraisat Mohammad H.1

Affiliation:

1. Regenerative Medicine Laboratory BTI‐Biotechnology Institute Vitoria Spain

Abstract

AbstractScaffolds should provide structural support for tissue regeneration, allowing their gradual biodegradation and interacting with cells and bioactive molecules to promote remodeling. Thus, the scaffold's intrinsic properties affect cellular processes involved in tissue regeneration, including migration, proliferation, differentiation, and protein synthesis. In this sense, due to its biological effect and clinical potential, Platelet Rich Plasma (PRP) fibrin could be considered a successful scaffold. Given the high variability in commercial PRPs formulations, this research focused on assessing the influence of cellular composition on fibrin membrane stability and remodeling cell activity. The stability and biological effect were evaluated at different time points via D‐dimer, type I collagen and elastase quantification in culture media conditioned by Plasma Rich in Growth Factors – Fraction 1 (PRGF‐F1), Plasma Rich in Growth Factors – Whole Plasma (PRGF‐WP) and Leukocyte‐rich Platelet Rich Plasma (L‐PRP) membranes, and by gingival fibroblast cells seeded on them, respectively. Ultrastructure of PRP membranes was also evaluated. Histological analyses were performed after 5 and 18 days. Additionally, the effect of fibrin membranes on cell proliferation was determined. According to the results, L‐PRP fibrin membranes degradation was complete at the end of the study, while PRGF membranes remained practically unchanged. Considering fibroblast behavior, PRGF membranes, in contrast to L‐PRP ones, promoted extracellular matrix biosynthesis at the same time as fibrinolysis and enhanced cell proliferation. In conclusion, leukocytes in PRP fibrin membranes drastically reduce scaffold stability and induce behavioral changes in fibroblasts by reducing their proliferation rate and remodeling ability.

Publisher

Wiley

Subject

Metals and Alloys,Biomedical Engineering,Biomaterials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3