Effects of nanomodified titanium surfaces considering bacterial colonization and viability of osteoblasts and fibroblasts

Author:

Astasov‐Frauenhoffer Monika1,Marot Laurent2,Sanchez Fabien2,Steiner Roland2,Lohberger Birgit3ORCID,Bornstein Michael M.1,Wagner Raphael S.4,Kühl Sebastian5,Mukaddam Khaled5

Affiliation:

1. Department of Oral Health & Medicine University Center for Dental Medicine Basel (UZB), University of Basel Basel Switzerland

2. Department of Physics University of Basel Basel Switzerland

3. Department of Orthopedics and Trauma Medical University Graz Graz Austria

4. Institut Straumann AG Basel Switzerland

5. Department of Oral Surgery University Center for Dental Medicine Basel (UZB), University of Basel Basel Switzerland

Abstract

AbstractThis study investigates nanostructured titanium surfaces (Ti2 spikes) that promote the viability of osteoblasts and fibroblasts and prevent bacterial colonisation. Helium ion irradiation was adopted to produce nanometric‐sized cones on titanium. Human osteoblasts (hFOB) and human gingiva fibroblasts (hGF) were used for analysis. A viability and a cytotoxicity assay were conducted to evaluate the lactate dehydrogenase (LDH) activity and assess cell damage in Ti2 spikes compared to titanium discs with a sandblasted and acid‐etched (Ti2 SLA) surface. The antibacterial activity was investigated against Escherichia coli, Streptococcus mutans, Fusobacterium nucleatum, and Porphyromonas gingivalis. In the course of the cultivation, both hGF and hFOB demonstrated significantly reduced viability on the Ti2 spikes surface. hGF cells exhibited a slight but significant increase in LDH release. In contrast, hFOB showed reduced cytotoxicity on this surface. On the Ti2 spikes surface, hGF cells exhibited a significant reduction in gene expression of VCL, Src‐1, and ITGα5. However, the integrin subunits ITGα1 and ITGα3 showed upregulation on the Ti2 spikes surface. The Ti2 spikes surface significantly increased the expression of almost all osteogenic markers. The results of conventional culturing demonstrated a statistically significant decrease in the number of viable cells for S. mutans, F. nucleaum, and greater quantities of P. gingivalis on Ti2 spikes surface compared to control. However, no such reduction was detected for E. coli. The long‐term success of implants relies on establishing and maintaining hard and soft peri‐implant tissues. Ti2 spikes represent a novel and promising approach to enhance osseointegration and optimize biocompatibility.

Funder

Swiss Nanoscience Institute

Medizinische Universität Graz

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3