Affiliation:
1. Otto H. York Department of Chemical and Materials Engineering New Jersey Institute of Technology Newark New Jersey USA
2. Department of Biomedical Engineering New Jersey Institute of Technology Newark New Jersey USA
Abstract
AbstractThere is a growing interest in creating 2D cardiac tissue models that display native extracellular matrix (ECM) cues of the heart tissue. Cellular alignment alone is known to be a crucial cue for cardiac tissue development by regulating cell–cell and cell‐ECM interactions. In this study, we report a simple and robust approach to create lamellar surface wrinkling patterns enabling spatial control of pattern dimensions with a wide range of pattern amplitude (A ≈ 2–55 μm) and wavelength (λ ≈ 35–100 μm). For human cardiomyocytes (hCMs) and human cardiac fibroblasts (hCFs), our results indicate that the degree of cellular alignment and pattern recognition are correlated with pattern A and λ. We also demonstrate fabrication of devices composed of micro‐well arrays with user‐defined lamellar patterns on the bottom surface of each well for high‐throughput screening studies. Results from a screening study indicate that cellular alignment is strongly diminished with increasing seeding density. In another study, we show our ability to vary hCM/hCF seeding ratio for each well to create co‐culture systems where seeding ratio is independent of cellular alignment.
Funder
New Jersey Health Foundation
Subject
Metals and Alloys,Biomedical Engineering,Biomaterials,Ceramics and Composites
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献