Sciatic nerve injury regeneration in adult male rats using gelatin methacrylate (GelMA)/poly(2‐ethy‐2‐oxazoline) (PEtOx) hydrogel containing 4‐aminopyridine (4‐AP)

Author:

Nemati Mahand Saba1,Jahanmardi Reza1,Kruppke Benjamin2ORCID,Khonakdar Hossein Ali23

Affiliation:

1. Department of Polymer Engineering, Science and Research Branch Islamic Azad University Tehran Iran

2. Max Bergmann Center of Biomaterials and Institute of Materials Science Technische Universität Dresden Dresden Germany

3. Department of Polymer Processing Iran Polymer and Petrochemical Institute Tehran Iran

Abstract

AbstractOne of the most important parts of the body is the peripheral nervous system, and any injuries in this system may result in potentially lethal consequences or severe side effects. The peripheral nervous system may not rehabilitate the harmed regions following disabling disorders, which reduce the quality of life of patients. Fortunately, in recent years, hydrogels have been proposed as exogenous alternatives to bridge damaged nerve stumps to create a useful microenvironment for advancing nerve recovery. However, hydrogel‐based medicine in the therapy of peripheral nerve injury still needs a lot of improvement. In this study, GelMA/PEtOx hydrogel was used for the first time to deliver 4‐Aminopyridine (4‐AP) small molecules. 4‐AP is a broad‐spectrum potassium channel blocker, which has been demonstrated to increase neuromuscular function in patients with various demyelinating disorders. The prepared hydrogel showed a porosity of 92.2 ± 2.6% after 20 min, swelling ratio of 456.01 ± 2.0% after 180 min, weight loss of 81.7 ± 3.1% after 2 weeks, and good blood compatibility as well as sustainable drug release. MTT analysis was performed to assess the cell viability of the hydrogel and proved that the hydrogel is an appropriate substrate for the survival of cells. In vivo studies were performed for functional analysis and the sciatic functional index (SFI) as well as hot plate latency results showed that the use of GelMA/PEtOx+4‐AP hydrogel enhances the regeneration compared to the GelMA/PEtOx hydrogel and the control group.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

Metals and Alloys,Biomedical Engineering,Biomaterials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3