Biofunctionalization of dental abutments by a zinc/chitosan/gelatin coating to optimize fibroblast behavior and antibacterial properties

Author:

Han Jing1,Andrée Lea1,Deng Dongmei2,van Oirschot Bart A. J. A.1,Plachokova Adelina S.1,Leeuwenburgh Sander C. G.1,Yang Fang1ORCID

Affiliation:

1. Department of Dentistry – Regenerative Biomaterials Research Institute for Medical Innovation, Radboudumc Nijmegen The Netherlands

2. Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam University of Amsterdam and Vrije Universiteit Amsterdam Amsterdam The Netherlands

Abstract

AbstractTightly sealed peri‐implant gingival tissue provides a barrier against oral bacterial invasion, protecting the alveolar bone and maintaining long‐term implant survival. To investigate if zinc can enhance the integration between peri‐implant gingival tissue and abutment surface, we herein present novel zinc/chitosan/gelatin (Zn/CS/Gel) coatings prepared using the electrophoretic deposition (EPD) technique. The effect of these coatings on human gingival fibroblasts (hGFs) was investigated by culturing these cells on top of the EPD coatings. Surface characterization demonstrated that Zn2+ were released in a sustained and pH‐responsive manner. The preclinical cell culture evaluation of these coatings indicated that the zinc‐containing coatings enhanced cell migration, adhesion and collagen secretion of hGFs. Moreover, the zinc‐containing coatings exhibited antibacterial efficacy by inhibiting the growth of Porphyromonas gingivalis and reducing attachment of Staphylococcus aureus. Notably, zinc‐free CS/Gel coatings prevented attachment of P. gingivalis as well. The coatings were also shown to be cytocompatible with epithelial cells and osteoblasts, which are other relevant cell types which surround dental implants after clinical placement. Based on our findings, it can be concluded that Zn‐containing coatings hold promise to enhance the adhesion of gingival tissue to the implant surface, which may potentially contribute to the formation of a robust peri‐implant soft sealing counteracting bacterial invasion.

Funder

China Scholarship Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3