Proximal policy optimization learning based control of congested freeway traffic

Author:

Mo Shurong1,Wu Nailong12ORCID,Qi Jie12ORCID,Pan Anqi1,Feng Zhiguang3,Yan Huaicheng4ORCID,Wang Yueying5

Affiliation:

1. College of Information Science and Technology Donghua University Shanghai China

2. Engineering Research Center of Digitized Textile & Apparel Technology Ministry of Education, Donghua University Shanghai China

3. College of Automation Harbin Engineering University Harbin China

4. School of Information Science and Engineering East China University of Science and Technology Shanghai China

5. School of Mechatronic Engineering and Automation Shanghai University Shanghai China

Abstract

AbstractIn this paper, a delay compensation feedback controller based on reinforcement learning is proposed to adjust the time interval of the adaptive cruise control (ACC) vehicle agents in the traffic congestion by introducing the proximal policy optimization (PPO) scheme. The high‐speed traffic flow is characterized by a two‐by‐two Aw Rasle Zhang nonlinear first‐order partial differential equations (PDEs). Unlike the backstepping delay compensation control,23 the PPO controller proposed in this paper consists of the current traffic flow velocity, the current traffic flow density and the previous one step control input. Since the system dynamics of the traffic flow are difficult to be expressed mathematically, the control gains of the three feedback can be determined via learning from the interaction between the PPO and the digital simulator of the traffic system. The performance of Lyapunov control, backstepping control and PPO control are compared with numerical simulation. The results demonstrate that PPO control is superior to Lyapunov control in terms of the convergence rate and control efforts for the traffic system without delay. As for the traffic system with unstable input delay value, the performance of PPO controller is also equivalent to that of backstepping controller. Besides, PPO is more robust than backstepping controller when the parameter is sensitive to Gaussian noise.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Applied Mathematics,Control and Optimization,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3