Challenges and solutions for automated avian recognition in aerial imagery

Author:

Miao Zhongqi12ORCID,Yu Stella X.2,Landolt Kyle L.3,Koneff Mark D.4,White Timothy P.5,Fara Luke J.3,Hlavacek Enrika J.3,Pickens Bradley A.6,Harrison Travis J.3,Getz Wayne M.17

Affiliation:

1. Department of Environmental Science, Policy, and Management UC Berkeley Berkeley California USA

2. International Computer Science Institute UC Berkeley Berkeley California USA

3. U.S. Geological Survey, Upper Midwest Environmental Sciences Center La Crosse Wisconsin USA

4. Division of Migratory Bird Management U.S. Fish & Wildlife Service Orono Maine USA

5. Environmental Studies Program Bureau of Ocean Energy Management Sterling Virginia USA

6. Division of Migratory Bird Management U.S. Fish & Wildlife Service Laurel Maryland USA

7. School of Mathematics, Statistics and Computer Science University of KwaZulu‐Natal Durban South Africa

Abstract

AbstractRemote aerial sensing provides a non‐invasive, large geographical‐scale technology for avian monitoring, but the manual processing of images limits its development and applications. Artificial Intelligence (AI) methods can be used to mitigate this manual image processing requirement. The implementation of AI methods, however, has several challenges: (1) imbalanced (i.e., long‐tailed) data distribution, (2) annotation uncertainty in categorization, and (3) dataset discrepancies across different study sites. Here we use aerial imagery data of waterbirds around Cape Cod and Lake Michigan in the United States to examine how these challenges limit avian recognition performance. We review existing solutions and demonstrate as use cases how methods like Label Distribution Aware Marginal Loss with Deferred Re‐Weighting, hierarchical classification, and FixMatch address the three challenges. We also present a new approach to tackle the annotation uncertainty challenge using a Soft‐fine Pseudo‐Label methodology. Finally, we aim with this paper to increase awareness in the ecological remote sensing community of these challenges and bridge the gap between ecological applications and state‐of‐the‐art computer science, thereby opening new doors to future research.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Computers in Earth Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Reference69 articles.

1. Arjovsky M. Bottou L. Gulrajani I.&Lopez‐Paz D.(2019)Invariant risk minimization.arXiv[preprint] arXiv:1907.02893.

2. Cai J. Wang Y.&Hwang J.‐N.(2021)Ace: ally complementary experts for solving long‐tailed recognition in one‐shot.Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 112–121.

3. Cao K. Wei C. Gaidon A. Arechiga N.&Ma T.(2019)Learning imbalanced datasets with label‐distribution‐aware margin loss.arXiv[preprint] arXiv:1906.07413.

4. An invasive-native mammalian species replacement process captured by camera trap survey random encounter models

5. Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3