Hydrogen bond producers in powerful protic ionic liquids for enhancing dissolution of natural cellulose

Author:

Chen Shi‐Peng1,Zhao Dan‐Yang1,Zhu Jin‐Long1,Wang Jing1,Zhong Gan‐Ji1,Huang Hua‐Dong1,Li Zhong‐Ming1ORCID

Affiliation:

1. College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China

Abstract

AbstractThe manipulation of hydrogen bonding within protic ionic liquids is conducive to conquering the robust hydrogen bonding interactions in cellulose for its effective dissolution, but it is a great challenge to establish the delicate balance of hydrogen bonding network between solvent and cellulose. Herein, we proposed the concept of “hydrogen bond producers” for urea molecules in 1,1,3,3‐tetramethylguanidinium methoxyacetate acid ([TMGH][MAA]) to enhance the dissolution of cellulose. The optimization of physicochemical properties for [TMGH][MAA] solvent as a function of urea concentration revealed a remarkable increase in cellulose solubility from 13% to 17% (w/w) by adding only 0.25 wt% urea, highlighting the efficiency of [TMGH][MAA] as a powerful solvent for the dissolution of cellulose. The experimental and simulation results verified that the significant improvement on dissolution of cellulose was attributed to the hydrogen bonding interaction of urea molecules with ion pairs and part of free ions, reducing the interference with the active ions bonded to cellulose. Furthermore, the considerable enhancement on comprehensive properties of regenerated cellulose films demonstrated the effectiveness of [TMGH][MAA]/urea solvent. The concept of “hydrogen bond producers” presented here opens a new avenue for significantly enhancing the dissolution of natural cellulose, promoting the sustainable development in large‐scale processing of cellulose.

Funder

Science and Technology Department of Sichuan Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3