Lithium and water: Hydrosocial impacts across the life cycle of energy storage

Author:

Blair James J. A.1ORCID,Vineyard Noel2ORCID,Mulvaney Dustin3ORCID,Cantor Alida4ORCID,Sharbat Ali1,Berry Kate2ORCID,Bartholomew Elizabeth4,Ornelas Ariana Firebaugh5

Affiliation:

1. Department of Geography and Anthropology California State Polytechnic University Pomona Pomona California USA

2. Department of Geography University of Nevada Reno Reno Nevada USA

3. Environmental Studies Department San José State University San José California USA

4. Department of Geography Portland State University Portland Oregon USA

5. Comite Civico del Valle Brawley California USA

Abstract

AbstractAs a key ingredient of batteries for electric vehicles (EVs), lithium plays a significant role in climate change mitigation, but lithium has considerable impacts on water and society across its life cycle. Upstream extraction methods—including open‐pit mining, brine evaporation, and novel direct lithium extraction (DLE)—and downstream processes present different impacts on both the quantity and quality of water resources, leading to water depletion and contamination. Regarding upstream extraction, it is critical for a comprehensive assessment of lithium's life cycle to include cumulative impacts related not only to freshwater, but also mineralized or saline groundwater, also known as brine. Legal frameworks have obscured social and ecological impacts by treating brine as a mineral rather than water in regulation of lithium extraction through brine evaporation. Analysis of cumulative impacts across the lifespan of lithium reveals not only water impacts in conventional open‐pit mining and brine evaporation, but also significant freshwater needs for DLE technologies, as well as burdens on fenceline communities related to wastewater in processing, chemical contaminants in battery manufacturing, water use for cooling in energy storage, and water quality hazards in recycling. Water analysis in lithium life cycle assessments (LCAs) tends to exclude brine and lack hydrosocial context on the environmental justice implications of water use by life cycle stage. New research directions might benefit from taking a more community‐engaged and cradle‐to‐cradle approach to lithium LCAs, including regionalized impact analysis of freshwater use in DLE, as well as wastewater pollution, cooling water, and recycling hazards from downstream processes.This article is categorized under: Human Water > Human Water Human Water > Water Governance Human Water > Water as Imagined and Represented Science of Water > Water and Environmental Change

Funder

Division of Behavioral and Cognitive Sciences

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3