Structured testing of genetic association with mixed clinical outcomes

Author:

Liu Meiling1ORCID,Su Yu‐Ru2,Liu Yang3,Hsu Li1ORCID,He Qianchuan1

Affiliation:

1. Public Health Sciences Division Fred Hutchinson Cancer Center Seattle Washington USA

2. Biostatistics Division Kaiser Permanente Washington Health Research Institute Seattle Washington USA

3. Department of Mathematics and Statistics Wright State University Dayton Ohio USA

Abstract

AbstractGenetic factors play a fundamental role in disease development. Studying the genetic association with clinical outcomes is critical for understanding disease biology and devising novel treatment targets. However, the frequencies of genetic variations are often low, making it difficult to examine the variants one‐by‐one. Moreover, the clinical outcomes are complex, including patients' survival time and other binary or continuous outcomes such as recurrences and lymph node count, and how to effectively analyze genetic association with these outcomes remains unclear. In this article, we proposed a structured test statistic for testing genetic association with mixed types of survival, binary, and continuous outcomes. The structured testing incorporates known biological information of variants while allowing for their heterogeneous effects and is a powerful strategy for analyzing infrequent genetic factors. Simulation studies show that the proposed test statistic has correct type I error and is highly effective in detecting significant genetic variants. We applied our approach to a uterine corpus endometrial carcinoma study and identified several genetic pathways associated with the clinical outcomes.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3